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The Bayesian ARTMAP
Boaz Vigdor and Boaz Lerner, Member, IEEE

Abstract—In this paper, we modify the fuzzy ARTMAP (FA)
neural network (NN) using the Bayesian framework in order to
improve its classification accuracy while simultaneously reduce its
category proliferation. The proposed algorithm, called Bayesian
ARTMAP (BA), preserves the FA advantages and also enhances
its performance by the following: 1) representing a category using
a multidimensional Gaussian distribution, 2) allowing a category
to grow or shrink, 3) limiting a category hypervolume, 4) using
Bayes’ decision theory for learning and inference, and 5) em-
ploying the probabilistic association between every category and a
class in order to predict the class. In addition, the BA estimates the
class posterior probability and thereby enables the introduction
of loss and classification according to the minimum expected
loss. Based on these characteristics and using synthetic and 20
real-world databases, we show that the BA outperformes the FA,
either trained for one epoch or until completion, with respect
to classification accuracy, sensitivity to statistical overlapping,
learning curves, expected loss, and category proliferation.

Index Terms—Bayes’ decision theory, category proliferation,
classification, fuzzy ARTMAP (FA), neural network (NN).

I. INTRODUCTION

THE fuzzy ARTMAP (FA) is considered as one of the
leading neural network (NN) algorithms for classification

[1]. The FA excels in fast incremental supervised learning in
a nonstationary environment. The network allows learning
new data without forgetting past data, tackling the so-called
“plasticity–stability dilemma” [2], which is crucial in incre-
mental learning. Following increase in data complexity, the
FA expands its complexity by allocating nodes dynamically
without user intervention. In addition, the algorithm depends on
minimal heuristics and settings of parameters and guarantees
short training periods and convergence [1], [3], [4]. The FA
and its variants have been found accurate and fast learners as
exemplified in performing various classification tasks, such as
automatic target recognition based on radar range profiles [5],
speaker-independent vowel recognition [6], online handwritten
recognition [7], electrocardiogram (ECG) signal recognition
[8], medical diagnosis of breast cancer and heart disease [9],
3-D object understanding and prediction from a series of 2-D
views [10], and recently also genetic abnormality diagnosis
[11].

The major drawback of the FA is its sensitivity to statistical
overlapping between the classes. It is the self-organization na-
ture of the algorithm that while enabling continuous learning
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of novel patterns also overfits noisy (overlapped) data that are
mistakenly considered as novel. This sensitivity is responsible
to uncontrolled growth in the number of categories, also referred
to as category proliferation, leading to high computational and
memory complexities and possible degradation in the classifi-
cation accuracy [4], [11], [12]. In order to tackle category pro-
liferation and to improve other characteristics of the FA, re-
searchers have proposed several enhancements to the FA such
as PROBART [4], Gaussian ARTMAP (GA) [6], ARTMAP-IC
[9], and ART-EMAP [10], as well as modifications to the FA
methodology [12], [13]. The improvement to classification ac-
curacy and reduction in category proliferation due to these mod-
ifications were examined on several synthetic and real-world
databases [6], [12], [13].

We propose the Bayesian ARTMAP (BA) that modifies some
of the characteristics of the FA algorithm by the following: 1)
replacing the hyperrectangular category with a Gaussian cate-
gory, 2) limiting the volume of a selected category hence al-
lowing the category to grow or shrink, 3) associating patterns
with categories and categories with classes probabilistically in
order to perform, respectively, ART and ARTMAP learning, and
4) enabling class probabilistic inference using all the associ-
ated categories. The BA also estimates category and class pos-
terior probabilities and thus enables the introduction of different
losses into the classification task. The BA is evaluated here in
comparison to the FA using different experiments and synthetic
and real-world data. The classifiers are evaluated with respect
to their classification accuracy, rise in the number of categories,
learning curves, expected loss, and sensitivity to statistical over-
lapping. For all these criteria and in all the experiments, the BA
proves superior performance to the FA.

Section II briefly summarizes the principles and dynamics
of the FA, whereas Section III introduces Bayesian ART and
BA learning and inference. Section IV extensively compares the
characteristics of the BA, FA, and GA [6]. In Section V, these
classifiers as well as others are experimentally and thoroughly
compared before completing the paper in Section VI with a dis-
cussion.

II. FA PRINCIPLES AND DYNAMICS

The FA NN for incremental supervised learning [1] incor-
porates two fuzzy adaptive resonance theory (ART) [2] mod-
ules denoted as ART and ART that are linked by a map field
module associating nodes (categories) from ART with nodes in
ART . The fuzzy ART module [14] performs fast incremental
unsupervised learning by clustering -dimensional input pat-
terns (every input pattern is initially com-
plement-coded [1]) into categories, each forming a hyperrectan-
gular region in the -dimensional input space. The th category
is defined by a vector of weights that each of its elements
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is initially set at 1 and is monotonically nonincreasing through
time.

Categorization with the fuzzy ART is performed in three
stages: category choice, category match (vigilance test), and
learning. In the category choice stage, a choice function is
calculated for the current pattern and each existing category

(1)

where is the fuzzy AND operation ,
is a choice parameter1 and the norm is . The chosen

category is the one achieving the highest value of the choice
function.

When a category is chosen, a hypothesis test called the vig-
ilance test is performed in order to measure the category match
to the pattern. If the match function exceeds the vigilance pa-
rameter

(2)

then the chosen category is said to win (match) and learning is
performed. Otherwise, the chosen category is removed from the
search by forcing the value of to zero for the rest of this pat-
tern presentation. As a result, a new category maximizing the
choice function (1) is chosen and the process continues until a
chosen category satisfies the vigilance test (2). If none of the
existing categories meets the vigilance test, a new category is
formed and learning for this category is performed without a
vigilance test. Either way, learning in the fuzzy ART is accom-
plished by updating the weight vector of the winning (or new)
category according to

(3)

where is the learning rate and defines fast
learning. Note that the vigilance parameter controls the simi-
larity required between the chosen category and the input pat-
tern (2) in order to control learning. Lowering the vigilance pa-
rameter provides broader generalization (large categories) and
vice versa.

Considering the FA for pattern recognition, the input to ART
is the pattern to classify and the input to ART is the pattern
label. The map field includes a matrix of weights which
maps ART categories to ART categories. The th row vector
of denotes the prediction of ART categories as a result of
the th winning category in ART . During the training phase,
the map field performs a vigilance test similarly to that of ART ,
where if the match function exceeds the map field vigilance pa-
rameter , then learning occurs. This test assures that
the prediction of the correct class complies with the label rep-
resented by the winning ART category. Else, a match tracking
procedure is activated for finding a better category in ART . In
this process, the map field raises ART vigilance parameter
until the current th category fails ART vigilance test (2) and
is removed from the competition. The search in ART proceeds
until an ART category that predicts the correct ART category

1An elaborated examination of the role of the choice parameter can be found
in [15].

is chosen; otherwise, a new category is created. When the ART
th category upholds the map vigilance test, its association to

the ART categories is adapted by the following learning rule:

(4)

where the components of ART output are zero except the
th component which is 1 if the th category wins in ART .
In fast learning mode , the link between the ART

th category and the ART th category becomes permanent,
i.e., for all data presentations. In the test phase, only
ART is active so the vigilance test in the map field is avoided.
The class prediction is deduced from the map field weights of
the winning ART category.

III. BA ALGORITHM

The BA is an alternative to the FA utilizing the latter fast
incremental learning, however, also diminishing its main short-
coming which is category proliferation. Category proliferation
in the FA originates mainly from two sources—inadequate
representation of the data and sensitivity to class overlapping.
The inadequacy of the representation is derived from using
the fuzzy set theory “minimum ” and “maximum ”
operators that lead to categories having hyperrectangular class
decision boundaries. A hyperrectangle may suit data distributed
uniformly but not the most natural (Gaussian) data distribution
that solicits a decision boundary in the form of a hypersphere or
hyperellipsoid. As the dimension of the classification problem
increases, the ratio between the volumes of a hyperrect-
angle and hyperellipsoid (both bounding the data) increases
monotonically [6]. That is, as the dimension increases, the
hyperrectangle category represents higher volumes in which
there are no patterns to support this representation (these are the
hyperrectangle “corners”). Furthermore, patterns residing in
these corners but belonging to different classes of the class that
is associated with the category, are wrongly clustered by the
category. In such a case, a match tracking procedure is activated
for finding a better existing category and if not found, a new
category is created. As class overlapping increases, the number
of such activations increases leading to category proliferation.

The second source of category proliferation is the FA sensi-
tivity to statistical overlapping between classes. Overlapping is
responsible for misclassifications during FA training. Each mis-
classification requires match tracking and raising the vigilance
parameter in order to find a more suitable category for the mis-
classified pattern. The selected category needs a larger weight
vector in order to beat the new vigilance parameter in the vig-
ilance test (2), and thus also a smaller size. Repeated for many
patterns of both classes and because small categories cannot rep-
resent wide regions, these misclassifications are responsible for
a large number of small categories within the overlapping area.
Moreover, if no existing category is found for a misclassified
pattern during match tracking, a new category is formed. Either
way, the result is category proliferation that is intensified with
the degree of class overlapping.

The proposed BA employs the main stages of the FA but it re-
places the deterministic rules of the FA with statistical learning
and inference. There are several main differences between the
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FA and BA. First is the shape of the categories—hyperrectangle
for the FA versus multidimensional Gaussian for the BA. Gener-
ally, the use of multidimensional Gaussian categories provides
better representation of the naturally distributed data. It also re-
quires a fewer categories and provides enhanced flexibility in
the representation [6]. Second is the category choice function (1)
that is based on fuzzy set-theory operations (FA) versus Bayes’
decision theory (BA). Bayes’ decision theory accounts not only
to the distance of a category to a pattern but also to the domi-
nance of the category with respect to other categories through
the category prior probability. The third difference is the match
function (2) limiting the size (FA) versus volume (BA) of a cat-
egory. Characterization using the volume (product of sides2)
instead of size (sum of sides) is more appropriate for high-di-
mensional clusters in real-world domains [16]. Fourth is class
prediction based on a single category (FA) versus many cate-
gories (BA). Basing class prediction on all the categories that
are probabilistically associated with the class rather than on the
single winning category provides better generalization. These
main differences between the FA and BA, as well as others, will
be elaborated in Section IV, where we will also extend on the
similarities and differences between the BA and GA [6].

The BA is composed of hierarchies, as the FA. The clustering
algorithm, called Bayesian ART, is described in Section III-A
whereas the BA in Section III-B.

A. Bayesian ART

Assuming the existence of a (conditional) probability den-
sity function for each class, we replace the deterministic
fuzzy ART hyperrectangular category by a multidimensional
Gaussian component and represent the class density using a
mixture of such components. Each Gaussian category is fully
characterized by its mean vector, covariance matrix, and prior
probability. These parameters provide extended information
about the category compared to the weight vector of the fuzzy
ART hyperrectangular category. That is, instead of a vague idea
about a category as exemplified for the fuzzy ART by a weight
vector composing of the category two extreme corners [1], the
Gaussian category of the BA is clearly identified by its central
of mass, shape of distribution, and dominance with respect to
other clusters. For example, a category of the fuzzy ART may
have the same parameters (weights) whether it clusters two
patterns or two thousand patterns, whereas using the Bayesian
ART the category would have different prior probabilities. Fur-
thermore, the distribution of the data within the category in the
fuzzy ART is completely unknown, where for the BA this dis-
tribution is estimated using a Gaussian represented by the data
covariance matrix. Also, with Gaussian representation there is
no need in complement coding as for the FA (Section II).

Similarly to the fuzzy ART, the Bayesian ART algorithm
composes of three main stages, namely, category choice, cat-
egory match (vigilance test), and learning.

1) Category Choice: In this stage, all existing categories
compete to represent an input pattern. The a posteriori proba-

2In the BA, the category side along a dimension is represented by the standard
deviation of the Gaussian along this dimension.

bility of the th category to represent the -dimensional pattern
3 is computed by

(5)

where is the number of categories and is the esti-
mated prior probability of the th category. The likelihood of

with respect to is estimated using all patterns that have al-
ready been associated with the multivariate Gaussian category

(6)

where and are the estimated mean and covariance matrix
of the th category.

The chosen (i.e., winning) category is the one with the max-
imum a posteriori probability (MAP)

(7)

That is, the th category is either more populated than other
categories [i.e., having high ] or more likely to be the true
category for [i.e., having high since, e.g., it is the
closest category to ] or both. Based on both probabilities and
Bayes’ theorem [16], the MAP criterion is expected to select a
winning category for the BA more accurately than if using only
one of the probabilities. For example, the MAP criterion may
prefer a category having a priori probability which is higher
than that of another category although the normalized by the
covariance distance4 of the former to the pattern is larger than
that of the latter.

2) Category Match (Vigilance Test): Similarly to the FA, the
purpose of the vigilance test is to ensure that the chosen category
is limited in size. The test restricts the BA th category hyper-
volume5 to the maximal hypervolume allowed for a category

(8)

where the hypervolume is defined as the determinant of the
Gaussian covariance matrix. For a diagonal covariance matrix,
this hypervolume is reduced to the product of the variances each
for a dimension

(9)

3In Section II, we denoted a pattern by III to comply with the FA literature [1].
We also denote the jth category by w .

4This is the argument of the exponent in (6), which is the Mahalanobis dis-
tance [16].

5For multidimensional categories, the volume is the natural way to represent
category size [16].
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If the winning category matches this criterion (8), learning is
performed. Else, the category is removed from the competition
for this pattern and the Bayesian ART searches for another cat-
egory until finding one complying with (8). If all existing cate-
gories fail the vigilance test, a new category is formed having a
mean vector which is the input pattern and an initial covariance
matrix that enables meeting (8) (it will be elaborated in
Experiment 1 in Section V-A).

3) Learning: When a chosen category matches the maximal
hypervolume (8), then the category parameters are adjusted by
the following update equations:

(10)

(11)

where is the number of patterns that have been clustered by
the th category before introducing the current pattern and is
the identity matrix. These mean and covariance matrix update
equations are expanded to the multidimensional case from se-
quential maximum–likelihood estimation for a single Gaussian.
The element product in (11) is performed if a diagonal matrix
is assumed. Updating the category prior probability is discussed
in Section III-B1.

B. Bayesian ARTMAP

1) Learning: In the training phase, the BA performs two
functions similarly to the FA but with some changes. First, the
BA maps each category of the Bayesian ART to a class. This
mapping can be deterministic like in the fast learning mode of
the FA, i.e., each category is mapped to only one class, or it can
be probabilistic, i.e., category is assigned to class with
probability . is the probabilistic alternative
to the deterministic matrix of weights of the FA.

The second similar function is match tracking but using a dif-
ferent criterion. As recalled, the map field in the FA compares
the prediction of the class to the pattern label. If the match is
below a certain threshold, then mismatch occurs and a new cat-
egory is searched for after raising . In fast learning, this means
that the FA should predict each training pattern correctly. This
criterion is highly sensitive to statistical overlapping between
different classes and it produces a large number of small cate-
gories in the overlapping region. In the BA, the proposed crite-
rion utilizes the class posterior probability for the winning cate-
gory . If this probability is larger than a threshold
(in analogy to the FA)

(12)

then the th category is associated with the th class. Otherwise,
mismatch occurs and match tracking (similar to that performed
by the FA) is activated by lowering the category maximal hy-
pervolume

(13)

enough to disqualify the winning th Bayesian ART category.
As a result, the Bayesian ART starts searching for a new cate-
gory that must have a smaller hypervolume . This procedure
continues until a winning category satisfies (12) or a new cate-
gory is formed.

Learning by the BA is carried out by estimating the joint cate-
gory-and-class probability using the frequency count.
The count is stored in a matrix holding in the th
entry the number of training patterns that belong to the th class
of the classes and are clustered to the th category of the
categories.6 is estimated by

(14)

Marginalizing this joint probability over the classes, we get the
th category prior probability that is used in the computation of

the a posteriori probability of the th category (5)

(15)

Using Bayes’ theorem, the estimate for the class posterior prob-
ability given a category is

(16)

which is simply the number of patterns from the th category
that are associated to the th class normalized by the number
of patterns clustered by the th category. Finally, when an
input pattern belonging to class is learned by the winning

th Bayesian ART category, the frequency count for the corre-
sponding matrix entry is updated

(17)

2) Inference: Inference corresponds to the association of a
category to a class when predicting a test pattern. During the
test, the FA declares the winning class as the class associated
with the winning ART category for a test pattern. In contrast,
the BA performs inference by using all the categories that are
associated to the class. That is, the class chosen for a test pattern

is

(18)

6In contrast, categories and classes in the FA are represented, respectively, by
the rows and columns of w .
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where

(19)

where , , and have already been defined
in (16), (15), and (6), respectively. In the fourth equality of (19),
we assume that

(20)

which means that once the Bayesian ART identifies the winning
category for the test pattern, it is only the association between
the category and class that affects the classification of the pat-
tern. This assumption is also made by the FA.

Take, for example, the following hypothetical matrix derived
at the end of training:

It represents a frequency count for three classes and a BA having
five categories. The estimated probabilities based on (14)–(16)
are, respectively

As this example shows, a category may represent more than one
class but the probabilities of doing so should summed to 1, as
required from posterior probabilities. Also, the example shows
that categories 2, 3, and 5 are associated entirely with classes 2,
1, and 3, respectively. Category 1 is mainly associated with class
3 (having a posterior of 3/4) and slightly with class 1 (having a
posterior of 1/4), whereas category 4 is equally associated with
classes 1 and 2. These probabilities reflect the contribution of
each category to the selection of each class when computing
(18). Note that in almost half of the cases in this example there
is no association between a class and a category.

IV. RELATED METHODOLOGIES

The BA is closely related to the FA [1] and GA [6]. The PRO-
BART algorithm, although having probabilistic characteristics,
has its strength in data projection and not in classification [4]
and, therefore, is not considered here. Both the BA and GA are
based on the FA, where each of the models go through the same
stages, namely category choice, category match, and learning
for the ART module and training and inference (test) for the
ARTMAP module. The differences are in the implementation of
these stages, where generally both the GA and BA are dissim-
ilar from the FA. Although the BA and GA have been developed
independently, they share several characteristics but at the same
time also differ in some other characteristics. Table I compares
the main characteristics of the three models.

The main differences between the FA and the GA/BA models
are, respectively, as follows: 1) pattern normalization through
complement coding versus Mahalanobis distance (the distance
from the pattern to the category mean normalized by the cat-
egory variance); 2) hyperrectangular versus multidimensional
Gaussian categories; also, category determination is in a “hard”
fashion as the smallest hyperrectangle that encloses all cate-
gory patterns versus a “soft” fashion as determined by the nat-
ural decline of the multidimensional Gaussian; 3) categories can
only grow versus grow or shrink as a consequence of statis-
tical learning; 4) category choice using terms of fuzzy set theory
operations versus Bayes’ decision theory; using Bayes’ theory
both the GA and BA favors categories that are either close to
the pattern and small (through the likelihood), highly populated
(through the prior probability), or both; 5) ART learning by cat-
egory movement towards the pattern in terms of fuzzy set theory
operations versus terms of maximum–likelihood-based sequen-
tial updating of parameters (mean, covariance, and prior prob-
ability); and 6) class prediction during inference is based on a
single versus multiple category(ies) associated with the class.

The differences between the GA and BA are in both the ART
and ARTMAP modules. Following Table I, we identify the
first difference in the multidimensional representation of the
Gaussian cluster. It is limited in the GA by a diagonal covari-
ance matrix; however, it is not limited in the BA allowing any
covariance matrix. That is, the first model implicitly assumes
feature independence, whereas the second model does not
restrict feature description.

The second difference is in the choice function. The GA em-
ploys a discriminant function (i.e., the logarithm of the joint
probability), whereas the BA computes the posterior probability
and thus establishes a generative model. When we are only in-
terested in the classification accuracy, the two models provide
the same; however, the BA model is more flexible and general
due to the computation of the posterior probability. Often, it is
desirable to introduce different losses to misclassifications or to
have the possibility of rejecting a pattern without classifying it
or to correct different class prior probabilities in the training and
test sets [17]. Using posterior probabilities, these are natural to
the BA but infeasible when employing the GA.

The third difference between the models affects directly the
performance of the models. During category match, the GA de-
termines how well the winning category matches the pattern
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TABLE I
MAIN CHARACTERISTICS OF THE FA, GA, AND BA CLASSIFIERS

using minus the squared Mahalanobis distance from the pattern
to the mean of the category (denoted here as ).7 If ex-
ceeds the vigilance parameter (Table I), the category resonates,
i.e., the winning category matches the pattern and learning oc-
curs by changing the category parameters in order to absorb
the pattern into the category. Employing emphasizes the
importance that is given to the closeness of the winning cate-
gory to the input pattern in evaluating their match. However,
this category may have reached resonance only because it is
large (having high standard deviation). That is, a large cate-
gory (that its mean is not necessarily close to the pattern) has
higher chances of meeting the category match.8 Since a large
category is more likely to represent patterns of different classes
(especially in regions of class overlapping), this category will
quite often cause mismatch during ARTMAP training followed
by match tracking in order to find or establish a more suitable
category. The consequence is category proliferation. Category
proliferation could have been controlled if limiting the size of

7As is shown in (6) and Table I, the Mahalanobis distance [16] is propor-
tional to the squared distance between the pattern and mean of the category and
inversely proportional to the category size manifested by the standard deviations
(or determinant of the covariance matrix).

8This category should also have high prior probability in order to win first the
category choice stage.

a category was part of the category match stage. This is in-
deed implemented by the BA. Only a winning category that its
volume9 is limited can meet the category match and be learned.
Thus, limiting category proliferation is vital in order to stabilize
FA-based models.

The fourth difference between the GA and BA is in the
ARTMAP learning. Learning in the GA is accomplished by
mapping the winning category to the pattern class unless
this category has already been associated with another class.
Learning in the BA is achieved by mapping all categories to
all classes in probability (although most of the probabilities are
zero, as is evident in the example of Section III-B2). Two or
more categories in the BA may be associated with the same
class (as in the GA) but also a single category may be associated
(probabilistically) with more than a single class. Moreover, by
associating all categories to all classes probabilistically, the BA
becomes less sensitive than the GA to the order of presentation
of training patterns. The GA depends on this order since a cat-
egory that represents a pattern and associated with the pattern
class could have been associated with another class if a pattern

9The BA defines the category volume by the determinant of the covariance
matrix or, for a diagonal matrix, by the “product of category sides” (9), whereas
the GA implicitly considers category size using�r , which is a sort of “sum of
category sides.”
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Fig. 1. Decision on a class based on the sum of unweighted pattern-category joint probabilities. A pattern indicated by the arrow will be classified to c only
because the unweighted sum of joint probabilities for this class is higher than the single joint probability for class c . Note, however, that the latter joint probability
is the highest of all probabilities.

close to the former but from another class would have been
presented first. This is especially significant in domains having
significant class overlapping.

Last is the difference in the inference stage. The GA assigns
a pattern to the class having the highest sum of joint probabili-
ties for the pattern and each category which is associated with
the class. The BA does the same but using the weighted and
normalized sum. Normalization turns the sum of joint probabil-
ities into posterior probability (19) and thereby enables
the calculation of the probability that the test pattern indeed be-
longs to a class rather than just deciding that it belongs to this
class. Weighting the joint probabilities by before the
summation in (19) ensures that categories that are strongly asso-
ciated with the class (as estimated during training) and thereby
leading to higher posterior probabilities will influence
the selection of the class more than other categories that are mar-
ginal to the class. That is, categories representing the class mass
of distribution contribute to the posterior more than cat-
egories representing class outliers.

When imposing in (12), is forced to be ei-
ther 1 or 0 and a decision about a class will be similar by both the
GA and BA, i.e., the GA is a private case of the BA.
also reduces the BA to the fast learning mode of the FA. To
demonstrate this difference between the models, we illustrate in
Fig. 1 an example two-class classification problem where the
first class is associated with three categories and the second

class with a single category. The figure shows that following the
GA method of inference, patterns that should have been clas-
sified to class (e.g., the pattern indicated by an arrow) are
wrongly classified to class only because the unweighted sum
of joint probabilities is concerned. In contrast to the GA, the BA,
weighting each joint probability for by the posterior probabil-
ities , as computed on the training set,
finds (having a single category weighted by )
a more appropriate class for the pattern than .

V. EXPERIMENTATION

We compared the BA performance with respect to classifica-
tion accuracy, learning curves, number of categories, sensitivity
to class overlapping and risk with those of the FA and GA using
synthetic and real-world databases. The FA was trained either
for one epoch or until completion.

By using a diagonal (rather than full) covariance matrix for
the cluster multidimensional Gaussian and making the mapping
between a category and a class deterministic (rather than proba-
bilistic), i.e., in (12) imposing or 1, we
degenerate the BA and render the model comparable to the GA.
This allows us to evaluate the importance of the other differ-
ences between the models (Section IV and Table I). Also, there
are two practical benefits in degenerating the BA. First is that
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Fig. 2. (a) Generating class conditional probability densities. (b) Posterior probabilities for Experiments 1–3.

a diagonal matrix is a compromise between a spherical covari-
ance, which can only model spherical densities, and a full co-
variance matrix, which can model any rotated scaled Gaussian
density but requires too many parameters and has poor sequen-
tial estimate. Second, by setting there is only a single
parameter to optimize for the BA. Nevertheless, as has
been outlined throughout the study the BA is general and not
restricted to a diagonal matrix or deterministic class-category
mappings.

A. Experimentation With Synthetic Data

We conducted five experiments with synthetic data formed
using predefined generating models. The first four experiments
were held employing Gaussian distributed data whereas the fifth
experiment using non-Gaussian data. In the first experiment, we
optimized the three classifiers to the data. In the second, we
evaluated the classifiers learning curves. In the third experiment,
we addressed the sensitivity of the classifiers to increasing de-
grees of statistical overlapping and, in the fourth, we introduced
losses to different misclassifications. In all the experiments, the
test accuracy was estimated using 2000 patterns and the training
accuracy using different numbers of patterns depending on the
experiment. Each experiment was performed using ten random
replications of the data and the results were averaged.

The first three experiments were held using a simple 1-D clas-
sification task. Patterns were generated from two classes, each
represented by a mixture of two Gaussian components

The class conditional probability densities and class posterior
probabilities for this classification task are shown in Fig. 2.

Experiment 1—Optimization: In the first experiment, the pa-
rameters of each classifier were optimized to the previously
mentioned classification task. The FA vigilance and choice pa-
rameters were optimized by exhaustive search over a wide grid
of parameters determined for and .
The BA maximal category hypervolume parameter was opti-
mized over the range . In the case of a
diagonal covariance matrix, each variance in the initial covari-
ance matrix should be very small, so that the category could
grow and change its shape during training. We set the initial co-
variance matrix to be spherical , where is the
identity matrix, hence the parameter is required to satisfy

(8), (9) to assure that the initial category
hypervolume is much smaller than the maximal hypervolume
allowed. The parameter of the GA, i.e., the initial standard
deviation of a category, was set to be the same as of the
BA and the GA vigilance parameter to 0.10

The optimal parameter values for each classifier, trained using
500 patterns, were determined based on the highest classifica-
tion accuracy on a validation set of 2000 patterns independent of
the training and test sets. Based on the accuracy averaged over
the ten data replications, we selected and for
an FA trained for one epoch (Fig. 3) and and
for an FA trained until completion (Fig. 4).

Fig. 5 shows the BA training and validation accuracies,
as well as the number of categories recorded for increasing
(log) maximal category hypervolume values. The figure can
be roughly divided into three different regions. The middle

10In the vigilance test of the GA (Table I), the log-likelihood (LL) is required
to be larger than the vigilance parameter � in order to achieve category resonance
[6]. Since the GA LL is nonpositive and usually � 2 [0; 1], we converted the
LL to the likelihood by taking exp(LL) before conducting the test with � = 0
[20], providing minimal category size and thus maximal generalization ability
to the model.
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Fig. 3. (a) Test accuracy and (b) number of categories for various vigilance and
choice parameter values of the FA trained for one epoch (Experiment 1).

Fig. 4. (a) Test accuracy and (b) number of categories for various vigilance and
choice parameter values of the FA trained until completion (Experiment 1).

region , denoted as (1), yields the highest
validation accuracy (maximum at 80.5%), almost fixed train
accuracy (81.2%), and a relatively low number of categories
(less than 39). The validation accuracy in this region is close
to that of the Bayes’ classifier (bound) [16] at 81.5%. The
second region (2), defined for , is characterized by
a very low number of categories (lower than 11) and mostly
constant train and validation accuracies (77.3% and 76.1%,
respectively), which are lower than those of region 1. The
third region (3) for yields decreasing validation
accuracy (down to 70%), rising training accuracy (up to 100%)
and increasing number of categories (up to 500) for decreasing
maximal hypervolumes. That is, region 2 represents underfit-
ting by the BA, region 3 represents overfitting, and region 1 is
where the maximal category hypervolume parameter should
be selected from. Based on the highest averaged validation
accuracy achieved in region 1 of Fig. 5, we chose the value of
the maximal category hypervolume parameter to be 1.

Since in all the experiments with synthetic data the densities are
1-D (i.e., ), we select the value of the initial parameter

to be two orders of magnitude lower than the
maximal category hypervolume parameter, i.e., 0.01. This was
also the value determined for the initial variance of the
GA. When decreasing the maximal category variance to a low
enough value, e.g., , the number of categories
reaches the number of training patterns, i.e., the BA turns to be
a Parzen window probability density estimator [kernel density
estimator (KDE)] with a Gaussian kernel [17]. In addition,
though the number of categories formed is random in nature,
its mean forms a smooth function of the maximal variance
that rises monotonically when lowering the maximal variance.
Therefore and in order to lessen the computational load, we
suggest to begin the optimization of this parameter with a high
value of the maximal category hypervolume parameter corre-
sponding to a small number of categories, lower this value, and
use the classification accuracy on a validation set as a stopping
criterion.

We note that the use of the full covariance matrix for each
category of the BA has both advantages and risks. On one hand,
using the full covariance might model each class more accu-
rately than using the diagonal covariance, especially if the gen-
erating model has rotated clusters. On the other hand, the full co-
variance requires much more parameters than the diagonal one
( versus for an -dimensional feature space).
Moreover, if a specific category clusters only a few training pat-
terns, its full covariance matrix estimation will be poor which
will undermine the classification accuracy. Thus, the full covari-
ance matrix is useful for large databases or when using a rela-
tively high maximal hypervolume parameter encouraging large
categories (8) which can be well populated. However, as Fig. 5
reveals, high values of do not contribute to high accuracy,
so, eventually, we should restrict employing the full covariance
matrix to large databases.

Finally for this experiment, Fig. 6 demonstrates the BA es-
timation for the posterior probability of class using the se-
lected initial variance. For clarity, the estimation for (which
is 1 minus that for ) is not shown in the figure. The estimation
is good as long as the density for does not vanish, i.e., for

(see Fig. 2). Note that neither the FA nor the GA
estimate posterior probabilities.

Experiment 2—Learning Curves: Using the same database,
we investigated in this experiment the learning curves of the
classifiers by measuring their test accuracy and number of cat-
egories as a function of the sample size. Using their optimal
parameters (Experiment 1), the classifiers were trained on sets
of increasing sizes (from 100 to 2000 patterns in increments of
100 patterns) and evaluated on the same test set. The advan-
tage of the BA over all other classifiers with respect to both ac-
curacy and number of categories and regardless of the sample
size is demonstrated in Fig. 7. The BA accuracy is shown to be
slightly inferior to the Bayes’ bound estimated at 82.6% and su-
perior to all other classifiers. The highest accuracies achieved by
each of the classifiers are given in Table II, i.e., 82.3%, 81.5%,
73.5%, and 70.1% for the BA, GA, and FA trained until com-
pletion and FA trained for one epoch, respectively. The table
also shows the category growth for the classifiers, quantifying
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Fig. 5. (a) Validation accuracy, (b) training accuracy, and (c) number of categories of the BA for different values of the (log) maximal category hypervolume
parameter (Experiment 1).

Fig. 6. Posterior class probability for c and its estimation by the BA (Experi-
ment 1).

the rate of increase of the number of categories with the increase
of the sample size. Using linear regression [17], we computed
values of category growth for the BA that are between an order
and two orders of magnitude smaller than those of the GA and
FA, respectively.

TABLE II
MAXIMAL TEST ACCURACY AND CATEGORY GROWTH RATE FOR THE

FA TRAINED FOR ONE EPOCH OR UNTIL COMPLETION, GA,
AND BA IN EXPERIMENT 2 (GAUSSIAN DATA)

Experiment 3—Statistical Overlapping: The purpose of this
experiment was to investigate the sensitivity of the classifiers
to statistical overlapping. We used the previous data-generating
functions but changed the variance of each density component in
order to control the statistical overlapping between the classes.
The degree of overlapping was measured by the accuracy of the
Bayes’ classifier (upper bound on the classification accuracy).
That is, as the variances of the densities increase and so does
the degree of overlapping between classes, the accuracy of the
Bayes’ classifier reduces. We employed 500 and 2000 patterns
for training and test, respectively. As can be seen in Fig. 8, all
the classifiers produce good results (accuracy and number of
categories) when the Bayes’ bound is very high (95%-100%),
i.e., almost no statistical overlapping between the classes. When
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Fig. 7. (a) Test classification accuracy and (b) number of categories for the FA trained for one epoch or until completion, GA, and BA for increasing sample sizes
in Experiment 2 (Gaussian data). The accuracies are also compared to that of the Bayes’ classifier (bound).

lowering the Bayes’ bound (i.e., increasing the degree of over-
lapping), the BA and GA average accuracies remain close to the
Bayes’ bound that is represented by the line . The accura-
cies of the BA (71.2%) and GA (69.6%) for the lowest Bayes’
bound that is measured are close to that of the Bayes’ bound
(74.3%) where those of the FA trained for either one epoch
or until completion are 58.6% or 62.7%, respectively. The ad-
vantage of the BA over the other classifiers with respect to the
number of categories is even clearer. The FA trained until com-
pletion, FA trained for one epoch, and GA require 363.4, 185,
and 108.6 categories, respectively, on average for the lowest
Bayes’ bound measured compared to only 41.7 categories on
average for the BA.

Experiment 4—Risk: We evaluated the classifiers for the
case where misclassifications have different costs. We adopt the
known problem of an animal that has to distinguish between a
predator and a harmless animal in order to decide whether to
run away or stay. A simplified version of this problem can be
formalized easily using the statistical framework when defining
two classes. The first class—harmless—has a high a priori
probability (say 0.9, as it is typical to encounter a harmless
animal) and the second class—predator—has a low a priori
probability (0.1). Let us assume that the predator and harmless
classes have a similar feature leading to statistical overlapping
between the classes. The cost of misclassifying the predator is

established as 50, as it can cause the death of the animal, where
the cost of misclassifying a harmless animal (false alarm) is
low (say 1), as it only forces the animal to run and hide for a
short period. This defines the loss function , i.e., the
loss in deciding on where the true class is . Thus, we cast
our example problem as follows:

Harmless

Predator

The class-conditional probability density and conditional loss
(risk) [16]

(21)
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Fig. 8. (a) Test classification accuracy and (b) number of categories for the FA trained for one epoch or until completion, GA, and BA for increasing Bayes’ bound
values (decreasing statistical overlapping) (Experiment 3). Accuracies are also compared to that of the Bayes’ classifier (bound).

Fig. 9. (a) Class-conditional probability densities and (b) conditional losses for
the two classes of Experiment 4.

for each class are shown in Fig. 9. Both classifiers were opti-
mized (similarly to the optimization in Experiment 1), trained,
and tested using the previously described densities. Having a set
of pairs , where is a pattern and
is its label, as well as a decision rule , the overall risk,

which is the expected loss associated with this decision rule, is
[16]

(22)

The expected loss and number of categories for sets of in-
creasing sizes (from 100 to 2000 patterns in increments of
100 patterns) for both classifiers are presented in Fig. 10. In
order to minimize the expected loss (22), we have to min-
imize the conditional loss (21) for each pattern, i.e., select
class [16]. The BA estimating the

posterior probabilities (19) of the two classes can easily imple-
ment this Bayes’ decision rule, however not the GA utilizing
likelihoods rather than posteriors or the FA obtaining only a
Boolean output in fast learning. In order to provide the GA
the ability to use the conditional loss, and thereby, reduce its
expected loss, we estimated for the GA a posterior probability
for each class using the ratio of the sum of likelihoods of all
categories associated with the class and the sum of likelihoods
of all categories. Indeed, this suggestion enabled the GA to
obtain an expected loss similar to that of the BA and the Bayes’
expected loss outperforming the large expected losses of the
two FA variants (see Fig. 10). The minimal expected loss of
each classifier is shown in Table III in comparison to the Bayes’
bound of 0.47. The differences between the models estimating
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Fig. 10. (a) Expected loss and (b) number of categories of the FA trained for one epoch or until completion, GA, and BA for increasing sample sizes (Experiment
4). Also shown is the expected loss of the Bayes’ classifier.

TABLE III
MINIMAL EXPECTED LOSS AND CATEGORY GROWTH RATE FOR THE FA

TRAINED FOR ONE EPOCH OR UNTIL COMPLETION, GA, AND BA
IN EXPERIMENT 4

the posterior probability (i.e., the BA and, employing the
previous suggestion, also the GA) and those which are not (the
FAs) are evident. Also evident (Table III) is the superiority of
the BA to all other classifiers with respect to category growth.

Experiment 5—Non-Gaussian Densities: This experiment is
very similar to Experiment 2 (learning curves); however, the
classes are composed of non-Gaussian densities. The first class
is composed of a mixture of a uniform and Rayleigh densi-
ties and the second class is a mixture of two uniform densities.
The class-conditional densities and posterior probabilities for
the two classes are shown in Fig. 11.

After all classifiers have been optimized to the problem (as in
Experiment 1), the BA produced test accuracy which was only
slightly lower than the Bayes’ bound (85.7%) when measured
for increasing sample sizes (Fig. 12 and Table IV). This accu-
racy is almost insensitive to the sample size. The GA accuracy,

Fig. 11. (a) Generating (non-Gaussian) class-conditional densities and (b) pos-
terior probabilities for the two classes of Experiment 5.

lower than that of the BA in , was more sensitive to the
sample size. The FA accuracy was lower than that of the BA in
about 10% for both training modes. Thus, the high test accuracy
attained by the BA demonstrates its superior ability to approx-
imate nondifferentiable and non-Gaussian densities. This supe-
riority is also shown in the category growth of the BA which is
lower in at least an order of magnitude than those of the other
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Fig. 12. (a) Test classification accuracy and (b) number of categories for the FA trained for one epoch or until completion, GA, and BA for increasing sample
sizes in Experiment 5 (non-Gaussian data). Accuracies are also compared to that of the Bayes’ classifier (bound).

TABLE IV
MAXIMAL TEST ACCURACY AND CATEGORY GROWTH RATE FOR THE FA

TRAINED FOR ONE EPOCH OR UNTIL COMPLETION, GA, AND BA
IN EXPERIMENT 5 (NON-GAUSSIAN DATA)

classifiers, similarly to all previous experiments. In addition, ex-
amining the standard deviations with respect to both accuracy
and number of categories, the BA is more stable and reliable
than all other classifiers.

B. Experimentation With Real-World Databases

The BA was investigated using real-world classification prob-
lems from the University of California at Irvine (UCI) repository
[18], United-States Postal Service (USPS) database [19] con-
taining segmented handwritten digits from U.S. zip codes, and
a cytogenetic database [21] in which the detection of signals
representing Down syndrome, Patau syndrome, or both syn-
dromes11 enable genetic abnormality diagnosis [11]. The BA
was compared to the FA trained for one epoch or until com-
pletion, a single Gaussian estimation (SGE) classifier, and the
kernel density estimation (KDE) classifier [17]. The KDE clas-
sifier is an extreme case of the BA for a very small maximal
hypervolume and the SGE classifier that uses a diagonal
covariance matrix is a computationally efficient algorithm.

11For each syndrome, we distinguish between real signals and artifacts.

The GA was not included in the comparison on the real-
world databases for two reasons. First is as demonstrated in
Section IV—the GA is a private case of the BA so there is no
point in experimenting with both models. Indeed, in the exper-
iments with the synthetic data (Section V-A), the performances
(accuracy or risk) of the GA were always inferior to those of the
BA and the number of categories was always higher than that
of the BA. Second, no method is suggested in [6] or elsewhere
for optimizing the GA parameters— and . For the synthetic
databases, we adopted the BA for the GA parameter (as
they are used for the same purpose) and the recommendation in
[6], [20] to set . However, choosing these values may not
be justified to either of the databases tested in this section and
the GA may therefore operate suboptimally.

The experimentation method used was cross validation [17]
using CV10. The optimization of the FA and BA for each of the
20 databases tested was similar to the optimization performed
for the synthetic databases. All experiments were performed
using the averaging strategy [1] with five different data presen-
tation orders. The same ordered training sets and CV folds were
used for the FA and BA to ensure proper comparison. The test
average classification accuracy and number of categories for
the classifiers are presented in Tables V and VI, respectively.
Bold font emphasizes the highest accuracy (Table V) or min-
imal number of categories (Table VI) achieved for a database.
Missing entries for the FA trained until completion and two large
databases (Pen and USPS) (NA in Tables V and VI) are due to
exceeding memory and computation resources resulting in sim-
ulation collapse of the FA, as hundreds and thousands of cate-
gories were formed.

When comparing the BA and FA trained for one epoch
(Table V), the former is more accurate on 17 databases and the



1642 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 6, NOVEMBER 2007

TABLE V
TEST ACCURACIES (%) OF THE FA TRAINED FOR ONE EPOCH OR UNTIL COMPLETION, BA, SGE, AND KDE CLASSIFIERS ON 20 REAL-WORLD DATABASES.

THE “ ” INDICATES DATABASES WHERE THE ADVANTAGE OF THE BA OR FA TRAINED UNTIL COMPLETION OVER THE OTHER CLASSIFIER IS

STATISTICALLY SIGNIFICANT WITH SIGNIFICANCE LEVEL OF 0.05

latter on three databases. The BA requires a smaller number of
categories on ten databases and the FA trained for one epoch
on ten other databases (Table VI). Compared to the FA trained
until completion, the BA accuracy is superior on 13 databases,
inferior on five databases, and on another two databases the FA
did not complete the task. Also, Table VI shows that the BA
requires a smaller number of categories on 14 databases and
the FA on four databases. In addition, we indicate in Table V if
there is statistical significance to the superiority of the BA (FA
trained until completion) to the FA trained until completion
(BA). “ ” denotes that the advantage of the classifier having a
larger accuracy is statistically significant with significance level
of 0.05. From the 13 (5) databases on which the BA (FA) has an
advantage over the FA (BA), on 7 (4) databases it is statistically
significant. Note that we exclude from consideration the two
databases (Pen and USPS) on which the FA collapsed.

On average, the BA has superior test accuracy to the KDE and
SGE classifiers. However, on several databases (Wine, Pima,
Breast, Balance, and Patau syndrome), the SGE classifier yields
higher test accuracy due to either a small sample size, almost
normally distributed data, or both, which are factors in favor of
the (parametric) SGE. The KDE classifier yields test accuracy
higher than the BA on the Balance, Mushroom, Pen, and USPS
databases. As the KDE classifier is an extreme case of the BA,
the results show that on these four databases the optimization
procedure suggested for the maximal hypervolume parameter

(Experiment 1 in Section V-A) stops too early at local maxima
(81.7%, 94.3%, 95.7%, and 94.0% for these databases, respec-
tively) and misses higher maxima reached by the KDE classifier
(at 89.9%, 100%, 99.3%, and 96.5%, respectively).

Averaging the results over all databases shows (Table VII)
that the BA outperforms all other classifiers with respect to ac-
curacy. The second best classifier, the FA trained until com-
pletion, has accuracy which is lower by 4.9% than that of the
BA. In addition, the BA is more robust than the FA (using ei-
ther of the training modes), as its accuracy variance is smaller
(6% compared to 8.3%). Moreover, when classifying only noisy
databases (i.e., Glass, Image, Lymphography, Zoo, and Hayes),
the BA produces relatively stable classification results, demon-
strated in an average variance over these databases of 9.9%,
where the FA trained for one epoch or until completion have
variances of 17.6% and 18.2%, respectively. Finally, the number
of BA categories averaged over all 20 databases is much closer
to that of the FA trained for one epoch than to that of the FA
trained until completion.

VI. DISCUSSION

We modified the FA using the Bayesian framework in order to
enhance the model classification accuracy while simultaneously
reduce its category proliferation. The proposed BA preserves
the FA advantages and also improves the latter performance
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TABLE VI
NUMBER OF CATEGORIES FORMED BY THE FA TRAINED FOR ONE EPOCH OR

UNTIL COMPLETION AND THE BA FOR 20 REAL-WORLD DATABASES

TABLE VII
TEST CLASSIFICATION ACCURACY AND ACCURACY VARIANCE, AS WELL

AS NUMBER OF CATEGORIES FOR THE BA, FA TRAINED FOR ONE EPOCH

OR UNTIL COMPLETION, SGE, AND KDE CLASSIFIERS AVERAGED OVER

ALL THE 20 REAL-WORLD DATABASES STUDIED

by the following: 1) representing categories using multidimen-
sional Gaussian distributions, 2) allowing categories to grow or
shrink, 3) limiting the volume of categories, 4) employing the
Bayes’ decision theory to probabilistically associate patterns to
categories and categories to classes, thereby augmenting both
learning and inference, and 5) predicting a class using all the
categories associated with this class.

Indeed, the BA outperformed the FA, either trained for one
epoch or until completion, for almost every aspect of perfor-
mance—classification accuracy, learning curves, sensitivity to
class overlapping, expected loss, and number of categories, on
both synthetic and real-world data. On the synthetic databases,
the dominance of the BA was absolute. This dominance was
also evident to the GA. In all the experiments with the synthetic
data, the accuracy of the BA was very close, and sometimes even

identical, to the Bayes’ bound of accuracy. In addition, averaged
over all the real-world databases, the BA accuracy outperformed
those of the FA classifiers. On all the real-world databases for
which the FA trained for one epoch needed a smaller number of
categories than the BA, it was also less accurate than the BA.
On three out of the four databases on which the FA trained until
completion was more accurate than the BA, it also needed at
least 30% more categories than the BA. Also, the FA produced
less stable and reliable classification accuracy than the BA.

The results on the synthetic databases show that the FA
trained until completion suffers from category proliferation
the most, both the FA trained for one epoch and GA suffer
from moderate category proliferation, and the BA is the least
sensitive classifier to the increase in data complexity. Note that
by setting the GA vigilance parameter following [6],
we form the minimal number of categories for this model, and
thereby, provide the model of the maximal generalization capa-
bility [13]. That is, any optimization made to this parameter in
order to improve the GA accuracy will also cause the increase
in the number of categories formed which will intensify the GA
inferiority to the BA with respect to category proliferation.

On the real-world databases, the BA number of categories
was roughly comparable to that of the FA trained for one epoch,
as each classifier needed to the smallest number of categories on
ten other databases. However, averaged on all databases, the FA
trained for one epoch required less categories. These two classi-
fiers utilized fewer categories than the FA trained until comple-
tion. Although using the Bayesian framework, the BA number
of categories remained constant only in special, not too com-
plex, cases. This is since all the FA-based methods create new
categories, but do not remove or join categories. Therefore, the
number of categories in these models can only grow. The task of
removing categories efficiently is not simple in the FA but can
be performed elegantly by the BA using the category prior es-
timates . Clearly, categories with low prior probabilities
have little influence in the inference stage and they can safely
be removed.

In addition to its improved performance, the BA estimates the
class and category posterior probabilities in the ARTMAP and
ART stages, respectively, while the FA and GA just propose a
class (ARTMAP) or category (ART). By using class posterior
probabilities (in a generative model such as the BA) in compar-
ison to just making decisions (in a discriminative model such as
the GA or FA), we can accommodate different priors between
the training and test sets, e.g., in medical diagnosis of a rare
disease [17]. In addition, we can address loss and classify ac-
cording to the minimum expected loss, as was indeed performed
in this study (Experiment 4 in Section V-A). Also, we may de-
cide to reject a pattern if the maximal conditional loss (21) (or
the posterior itself) is greater (smaller) than a threshold. These
benefits are only possible when the classifier computes poste-
rior probabilities. Usually, however, the accuracy of a generative
model is more sensitive to the sample size than that of a discrim-
inative model, since the former model requires estimating den-
sities rather than just making decisions. However, this is not the
case with the BA that manifests high accuracy, stable learning
curves, and a small, constant number of categories even with a
small sample size.
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Finally, a way to overcome over the FA sensitivity to the order
of presentation of training patterns and improve generalization
performance is the voting strategy [1], [6], [9], [11]. It will be in-
teresting to see whether the BA also improves its generalization
performance using the voting strategy, although as stated before
the BA is less sensitive to the order of data presentation than the
FA. Another direction of future research is studying the contri-
bution of the probabilistic association of categories to classes
as revealed in . Rather than degenerating the BA to be
comparable to the GA by taking , we plan to inves-
tigate the contribution of the probabilistic association between
categories and classes to inference.
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